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Abstract
The impact of global warming presents an increased risk to the world’s shorelines. The Intergovernmental Panel on 
Climate Change (IPCC) reported that the twenty-first century experienced a severe global mean sea-level rise due 
to human-induced climate change. Therefore, coastal planners require reasonably accurate estimates of the rate of 
sea-level rise and the potential impacts, including extreme sea-level changes, floods, and shoreline erosion. Also, 
land loss as a result of disturbance of shoreline is of interest as it damages properties and infrastructure. Using a 
nonlinear autoregressive network with an exogenous input (NARX) model, this study attempted to simulate (1991 to 
2012) and predict (2013–2020) sea-level change along Merang kechil to Kuala Marang in Terengganu state shoreline 
areas. The simulation results show a rising trend with a maximum rate of 28.73 mm/year and an average of about 
8.81 mm/year. In comparison, the prediction results show a rising sea level with a maximum rate of 79.26 mm/year 
and an average of about 25.34 mm/year. The database generated from this study can be used to inform shoreline 
defense strategies adapting to sea-level rise, flood, and erosion. Scientists can forecast sea-level increases beyond 
2020 using simulated sea-level data up to 2020 and apply it for future research. The data also helps decision-makers 
choose measures for vulnerable shoreline settlements to adapt to sea-level rise. Notably, the data will provide essen-
tial information for policy development and implementation to facilitate operational decision-making processes for 
coastal cities.

Keywords NARX · Time series · Environmental data analysis · Climatic · Shoreline · Simulation

Responsible Editor: Marcus Schulz

 * Milad Bagheri 
 milad.bagheri.gh@umt.edu.my

 Zelina Z. Ibrahim 
 zelina@upm.edu.my

 Isabelle D. Wolf 
 iwolf@uow.edu.au

 Mohd Fadzil Akhir 
 mfadzil@umt.edu.my

 Wan Izatul Asma Wan Talaat 
 wia@umt.edu.my

 Bahareh Oryani 
 bahare.oryani@snu.ac.kr

1 Institute of Oceanography and Environment, Universiti 
Malaysia Terengganu, 21030 Kuala Nerus, Malaysia

2 Department of Environment, Faculty of Environmental 
and Forestry, Universiti Putra Malaysia, 
43400 Seri Kembangan, Malaysia

3 School of Geography and Sustainable Communities, 
University of Wollongong, Northfields Avenue, Wollongong, 
NSW 2522, Australia

4 Centre for Ecosystem Science, University of New South 
Wales, Sydney, NSW 2052, Australia

5 Technology Management, Economics and Policy Program, 
College of Engineering, Seoul National University, 1 
Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea

http://orcid.org/0000-0001-9226-3067
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-21662-4&domain=pdf


 Environmental Science and Pollution Research

1 3

Introduction

While the number of people living in coastal areas is 
growing, nearly 70% of the world’s coastal is receding. 
Only 20% of the land is considered stable, while the 
remaining 10% is assessed to be in an advanced state of 
retreat (Bagheri et al. 2021a). According to the Fourth 
Assessment Report (AR4) of the Intergovernmental Panel 
on Climate Change (IPCC), global sea levels will increase 
by 18–59 cm by 2100. (Sudipta et al. 2021).

It is evidenced by the recently reported accelerated 
decline of polar ice sheet masses (2–5) and makes future 
sea-level rises of 1 m or more by 2100 a real possibility 
(Pfeffer et al. 2008). With rising sea levels, a significant 
loss in assets is expected. The predicted sea level from 
global climate change is likely to impact shoreline systems 
throughout the world significantly. Significant numbers of 
coastal assets worldwide are susceptible to damage from 
flooding and erosion. It happens when climate change 
events at sea drive storm surge toward the shorelines, 
leading to a localized rise above normal tide levels that 
can result in flooding and erosion of the immediate and 
surrounding shoreline areas. Therefore, a critical scientific 
endeavor is a better understanding of shoreline response to 
changes in sea level to inform policy and decision making. 
The examination of tidal gauge observation data during the 
twentieth century revealed that the global sea level would 
rise by an average of 1.70.5 mm/year (Bindoff et al. 2007).

Ibrahim and Wibowo (2013) reported that flooding 
incidences have constantly been throughout Kuala Tereng-
ganu. The Dungan district, for example, experiences floods 
almost on an annual basis, mainly when the river water 
level rises a few meters above a harmful level. Floods were 
often caused by direct runoff from rivers or tidal surges 
from the ocean.

Gasim et al. (2007) reported that over 70% of Tereng-
ganu is classified as a low-lying coastal area of fewer than 
200 m in altitude, and approximately 30% of the area is con-
sidered vulnerable to flash floods. The northeast monsoon 
contributed to flooding events in Southern Thailand and the 
eastern region of Malaysia, including the Kelantan Province, 
situated in the Northeastern part of Peninsular Malaysia. 
There, floods affect nine out of ten townships. One of the 
characteristics of the monsoon season is the heavy annual 
rainfall lasting from October to March that causes severe 
floods in most of Terengganu, especially around November 
and December. In December 2004, Terengganu and several 
other states in Malaysia, such as Perak, Perlis, Kelantan, 
and Pahang, were exposed to heavy rainfall that caused one 
of the most severe flooding events. During this time, the 
National Security Council (Majlis Keselamatan Negara, 
MKN) moved more than 100 000 people from the affected 

areas to relief centers (MERCY 2014). Over time, wide-
spread coastal inundation can modify water quality and the 
characteristics of groundwater, leading to the loss of prop-
erties and life, adversely impacting agricultural production, 
harming the tourism industry, and discouraging recreation 
(Doong et al. 2009).

There are several causes for sea-level change (Bird 2011; 
Church et al. 2010): firstly, the sea level’s steric effects and 
eustatic movement typically decrease or increase the water 
volume in the ocean basins. Secondly, water mass exchange 
with continents leads to variability in sea level. Thirdly, 
elastography affects the dispersal of meltwater of ice sheets 
which often causes uneven spatial variations in sea level. 
In essence, sedimentation and tectonic movements lead to 
variations in sea level. In addition, the downward or upward 
movements of the Earth’s crust can cause sea levels to 
increase or decrease. Due to climate change, sea-level rise is 
occasionally called anthropogenic (Hassan 2002; Bird 2011; 
Mitrovica et al. 2001; Church et al. 2010; Tjia 1992 1996).

Sea-level variation can alter marine habitats, natural 
coastal processes, and ecosystems. Experience has proven 
that sea-level change can affect coastal infrastructure and 
adversely impact Malaysia’s socio-economy. Nevertheless, 
these impacts can be minimized and alleviated with knowl-
edge and adequate preparedness. Otherwise, coastal cities 
will suffer from susceptibility, vulnerability, hazard, and risk 
from sea-level rise impacts. It highlights the importance of 
science-based coastal city assessments, including tide gauge 
data analysis, to better predict sea-level change.

Here, we focus on Kuala Terengganu to exemplify how 
such a study can assist coastal and shoreline decision-mak-
ers in developing policies and strategic action plans. This 
research reviewed sea-level statistical analysis from tide 
gauge data (1991–2012).

This research aims to critically analyze, examine trends, 
and assess the stochastic aspects of existing and forecasted 
sea-level data from tide gauge stations on Peninsular Malay-
sia’s East Coast.

The following are the two specific goals of this project: 
to see how much local climatic knowledge can increase the 
precision of the simulation and projections of sea level. Sec-
ondly, on the Kuala Terengganu shoreline area, compare the 
simulation and forecast effects of tidal gauge stations using 
the NARX model.

Climate change and sea‑level rise

Monitoring shoreline changes offer essential insights for pre-
dictions on the potential impacts on coastal economic devel-
opment and land management (Welch et al. 1992). Over the 
past 15–20 years, scientific assessments of climate change 
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that consider human dimensions have improved considerably 
(Moser 2005; Rayner and Malone 1998). The sea level is 
potentially rising (Nicholls and Cazenave 2010). The impact 
of the Greenland and West Antarctic ice sheets on regional 
sea-level variations is one of the most significant. Regard-
less, sea levels have been rising since the twentieth century 
(Boateng 2012) and continue to rise at an accelerated rate.

N.A.H.R.I.M. has done several studies on imminent 
global warming issues, including sea-level rise forecasts 
in Malaysia, shoreline vulnerability assessments for high-
risk locations, and the creation of potential sea-level rise 
inundation maps (Awang and Abd Hamid, 2013). The east 
coast of Peninsular Malaysia is vulnerable to sea-level rise. 
According to previous research, the northeast monsoon in 
1997 caused a 50 cm rise in sea level and a 1 °C decrease 
in coastal water temperature in Kuala Terengganu (Taira 
et al. 1996). In 60 years, Malaysia’s temperature and rain-
fall are projected to climb by + 0.6 to 3.4 °C and − 1 to 32%, 
respectively, while the sea level is expected to rise by around 
13–94 cm (Bagheri et al. 2019). As a result, these could 
influence water resources, the coastal zone, flood control, 
public health, and other areas, requiring national and inter-
national actions to combat climate change (Begum et al. 
2011). However, a holistic assessment of the effect of sea-
level rise on the shoreline zone is required to design appro-
priate adaptation measures that would limit the possible con-
sequences of sea-level rise on the shoreline zone. Flooding, 
erosion, and shoreline change are significant issues along 
Peninsular Malaysia’s eastern coast, particularly in the South 
China Sea (Boateng 2012).

Many researchers assume a proportional relationship 
between climate factors and sea level. Therefore, the rate of 
the sea-level rise should increase in concert with increases in 
climate factors. Rainfall is one factor that needs to be moni-
tored. Peninsular Malaysia’s rainfall averages approximately 
2,540 mm annually, though rainfall distribution patterns vary 
and depend on local topography and seasonal wind flow (Raj 
2000). Rainfall patterns along the East Coast indicate wider 
seasonal variation, with a maximum recorded in Novem-
ber, December, and January, whereas the driest months in 
most districts, are between June and July (Nieuwolt 1965; 
M.M.S. 1999). In 2012, the Dungun district was severely 
hit by a monsoon flood, with floodwaters reaching up to 
1.5 m in height (Ishak et al. 2014). The geographical loca-
tion of Kuala Terengganu near the equator makes it vulner-
able to two distinct monsoon seasons, namely the Southwest 
monsoon (May to September) and the Northeast monsoon 
(October to March).

Another issue to keep an eye on is the wind, which affects 
the behavior of waves despite being light and unpredictable 
in Malaysia. Several flow patterns exist relating to the North-
east monsoon, the Southwest monsoon, and two shorter 
interim monsoon seasons. During the Southwest monsoon 

(end of May/early June to September), the predominant 
wind flow comes from a south-westerly direction at light 
wind speeds (< 15 knots). In contrast, steady easterly or 
north-easterly winds at l0–20 knots dominate the northeast 
monsoon from early November to March. The two shorter 
inter-monsoon seasons have winds that are usually light and 
variable. The monsoon winds that occur during the North-
east monsoon, the primary rainy season in Malaysia, influ-
ence the magnitude and direction of waves. Strong waves are 
widespread during this time.

Tide gauge stations of Peninsular Malaysia

There are 21 tidal stations located along with Peninsular 
Malaysia. The height of the nearest benchmark (B.M.) refers 
to four entities:

1. Elevation above the Land Survey Datum (L.S.D.) was 
determined at Port Klang in 1912 by the British Admi-
ralty for all northern stations in Peninsular Malaysia.

2. Elevation above the Peninsular Malaysia Geodetic Ver-
tical Datum (P.M.G.V.D.) was determined from tidal 
observations at Port Klang from 1984 to 1993 for all 
southern stations in Peninsular Malaysia.

3. Elevation above the Kota Kinabalu datum 1975 (East 
Pillar), for the station in Kota Kinabalu.

4. Elevation above the Belfry Datum 1918, for the station 
located in Tawau.

All 21 tidal stations are of the float type and manufac-
tured by Kyowa Shoko Co. Ltd., Japan. They all use the IC-
Memory cassette digital recording system (Table 1). These 
tide gauges have a set mode whereby every sampling interval 
can be set as needed. The tidal values are averaged by the 
built-in microprocessor and recorded on the IC-Memory cas-
sette. The sampling interval set by Jabatan Dan Pemetaan 
Malaysia (J.U.P.E.M.) is every 10 s and input data are aver-
aged every 50 s.

Artificial neural network model

In theory, artificial neural networks (ANNs) present signifi-
cant advantages compared to standard statistical methods. 
Neural networks automatically permit indiscriminate non-
linear relationships between the dependent and independ-
ent variables and all potential interactions between the 
dependent variables. Hence, the standard statistical methods 
necessitate supplementary modeling to tolerate this flexibil-
ity. Moreover, ANNs do not require obvious distributional 
assumptions (Sargent 2001). ANNs that can estimate nonlin-
ear mathematical functions (Hornik 1993) make it possible 
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to simulate a complicated behavior system without knowing 
the fundamental relationships between its elements (Haykin 
1999). The information processing system structure of these 
models is unique. The advantages of ANNs over other meth-
ods stem from their ability to self-learn, allowing them to 
describe the fundamental relationships between input and 
output variables without requiring prior knowledge of the 
nature of the association. Zhao et al. (2012) noted that this 
advantage makes ANNs suitable for complex nonlinear 
problems that cannot be analytically resolved. This advan-
tage renders ANN models superior to other traditional statis-
tical models, such as the Multiple Linear Regression (MLR) 
models, which are inappropriate for non-normally distrib-
uted data (Masters 1993). Another adaptability of ANN is 
its capacity to resolve specific problems.

ANN models are organized in many interconnected pro-
cessing neurons or nodes that work in unity. They work as a 
black-box model without requiring comprehensive system 
information because ANN uses historical data to study the 
connection between input and output parameters. They con-
stitute powerful tools for modeling (Lek et al. 1996; Lek and 
Guégan 1999; Mas et al. 2004). ANNs can learn from their 
surroundings through the representation of diverse samples 
and via learning algorithms. Every time an ANN model is 
generalized, it can connect any input data correctly, irrespec-
tive of whether they were utilized during the learning stages. 
ANNs could be described as estimators of semi-parametric 
regressions. Hence, they can access virtually any (meas-
urable) function to an indiscriminate amount of accuracy 
(Hornik et al. 1989). They appeal to many researchers due 
to their similarity to the human brain. They appear to pro-
vide “prediction” without the problems connected with the 
utilization of mathematics. Eftekhar et al. (2005) noted that 
the challenge in developing ANN models is the absence of 
set methods to construct the network architecture.

Data requirements

We obtained re-analyzed and primary data from various web-
sites and departments for this study. It comprised monthly 
observed tide gauge data from Kuala Terengganu and data 
on sea surface temperature (SST), rainfall, wind, and Sea-
Level Pressure (SLP). The observed monthly tide data were 
obtained from the Department of Survey and Mapping Malay-
sia (J.U.P.E.M., Geodetic Survey Division, Vertical Refer-
ence Section Infrastructure). The Malaysian Meteorological 
Department (MMD) provided monthly rainfall and wind 
speed data. The National Centre for Environmental Prediction 
(N.C.E.P.) also provided re-analyzed data for SST and SLP.

The analysis system software in J.U.P.E.M. was utilized 
to predict monthly tide gauge data to forecast changes in sea 
levels. Monthly anticipated wind data were obtained from the 

MMD. In contrast, data on the monthly anticipated rainfall 
was sourced from the Research Centre for Tropical Climate 
Change System (I.K.L.I.M.) of the National University of 
Malaysia (U.K.M.). The projection of rainfall was analyzed 
using the Had CM3-PRECIS climate model. The study dis-
cusses the results of the configuration and validation of the 
PRECIS regional climate simulation (Kwan et al. 2014), 
while the NCEP-PCM1 provided the data on SST and SLP.

The study has several database limitations: First, there is 
insufficient data. There are inadequate tide gauge stations 
along Malaysia’s coast. On average, each state has only one 
tide station. Studies of this nature require at least two or 
three stations. Secondly, insufficient time-series data. The 
third constraint was the high cost of the program. The fourth 
constraint, as mentioned previously, concerned the reporting 
and research gathered from Malaysian government agencies.

Time series analysis

Time-series data are chronologically ordered data (Amerian 
and Vosooghi, 2011). Mean sea-level (MSL) daily observa-
tion data enables the analysis of historical records at tide sta-
tions which offers evidence of nonlinear change in sea level. 
This present study analyses a time series of Observed Tide 
Gauge (OTG) documented at Chendering station (situated 
in Terengganu state, Long: 103° 11′ 12″ E and Lat: 5° 15′ 
54″ N) between 1991 and 2012. Based on that, the Sea-Level 
Residual (SLR) for sea-level rise prediction was generated. 
Before that, the study conducted statistical investigations of 
the OTG to detect any outliers and missing data.

The OTG data were utilized to simulate Tide Gauge (SDG) 
with the aid of the tide analysis software system at J.U.P.E.M. 
in 2012. The first Tide Gauge Processing System (TGPS) 
Model software was applied by Jabatan Ukur dan Pemetaan 
Malaysia and coined accordingly as J.U.P.E.M. It was built for 
the MS-DOS environment, and most modules were in com-
mand prompt form (J.U.P.E.M., 2014). Top Optics Sdn Bhd 
managed the second version development of the TGPS soft-
ware on behalf of J.U.P.E.M. Top Optics Sdn Bhd drove this 
initiative to upgrade the original system to a new operating 
system (Windows 98 using Visual Basic 5.0). The software 
will require further development and enhancement to adapt to 
current operating system standards and enhance efficiency in 
data processing, printing tide graphs, etc. Tide’s new TGPS 
software will be developed using the visual primary 6.0 lan-
guage with the help of Microsoft Access as a data keeper for 
the Microsoft Windows XP operating system.

Before a simulation (2019 to 2012) and prediction 
(2013 to 2020) of sea level using the NARX model for the 
Kuala Terengganu area, the Sea-Level Residual (SLR) for 
the tide gauge station from 1991 to the 2012 year should 
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be estimated and can be calculated with the Tide Gauge 
Observed (TGO) and Tide Gauge Simulated (TGS) data 
(1991 to 2012) (TGO – TGS = SLR). SLR is time-series 
data utilized as an output simulator in the NARX model for 
simulation learning (Bagheri et al. 2021a, 2019).

Since October 1984, the Zero of the Tide Gauge (Z0) for 
the Chendering tide station has been constant (J.U.P.E.M. 
1997). The OTG was obtained from the Department of Survey 
and Mapping Malaysia (J.U.P.E.M.) (Fig. 1). The mean of the 
Datum level is approximately 105.4 (cm), and a Minimum of 
96.7 (cm) and a maximum of 114.5 (cm) were noted.

Sea-level rise would be an increasing problem in the 
study area, leading to more significant shoreline erosion 
in the region because the study area is primarily low-lying 
coastal plains. It could endanger the residents who live in 
these places and the coastal environment. This study’s find-
ings could aid in developing a new sea-level rise trend, and 
the findings could be used as part of a coastal vulnerability 
assessment. The findings could also suggest prioritizing 
conservation measures in degraded regions and initiating 
decisions to manage sea-level rise impacts adaptively. One 
of the most challenging aspects of maintaining coastal envi-
ronments is determining which areas are at risk.

Artificial neural networks model

A vital component of artificial neural networks (ANN) is how 
it processes mathematical information, much akin to how a 
cerebral nervous system would (Birdi et al. 2013; Kruse et al. 
2011). It consists of several vastly corresponding computa-
tional nodes or processing neurons which work together to 
solve particular problems under a connectionist approach to 

computation. By obtaining a weighted input, the related out-
put is generated by the node with the use of an activation func-
tion. Numerous neurons can be amalgamated into one layer.

Essentially, an ANN can comprise one or more interre-
lated layers of neurons in which all the neurons are linked. 
While the new information is admitted through the input 
layer, the hidden layers process this information, and the out-
come of the network is presented in the output layer. Accord-
ing to Bishop (1995), the configuration of interrelationships 
between the nodes in the layers is known as architecture. 
Generally, the architecture of ANN comprises an input layer, 
an output layer, and one or more hidden layers. The main 
feature entails processing information characteristics in 
high-parallelism, nonlinear, fault, and noisy environments 
with generalization and learning abilities (Polo et al. 2015).

Li et al. (2020) say that neural networks can make gener-
alized models by being trained on available datasets. Con-
versely, a trained net can categorize data from the identical 
category as the trained dataset that has not been previously 
seen. The input data were normalized to increase training 
efficiency (Taoufik et al. 2022). Before using the neural net-
work model, it is necessary to pre-treat the climate sample 
data to enable the input and output data to sustain at the 
steep sector of the sigmoidal transfer function, increase the 
forecasting precision, and strengthen the effectiveness of the 
data recognition (Zime 2014).

In essence, it is essential to conduct the normalization of 
the input data to ensure that they are in an identical range 
of applied transfer functions. It was to restrict their range 
within the interval of 0–1 (Polo et al. 2015) because the 
middle layer’s processing elements (P.E.s) were allotted 
a sigmoidal activation function. As a result, the shape of 
this function is critical to the ANN’s learning. The weight 

Fig. 1  Observed, simulated, 
and residual time series data of 
Chendering station
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variation close to a value of 0 or 1 is minimal P.E. and “dull,” 
while those closer to 0.5 react more (Ghamarnia and Jalili 
2015). Thus, the following formula was used to normalize 
the data (Eq. 1):

where xnormal is the normal data, xmean is the observed data 
means, xmin is the minimum, and xmax is the maximum 
observed data. In this study, five input and one output 
data for the ANN structure were used for simulation (from 
1991–2012) and prediction (2013–2020).

NARX model procedure

The methodological framework used to address the study’s 
first objective is depicted in Fig. 2. It displays the neces-
sary steps as well as the necessary data for each stage. The 

(1)Xnormal = 0.5 + 0.5(
x − xmean

xmax − xmin

)

methodology is divided into data analysis and applying the 
NARX model. After using statistical procedures to normal-
ize and replace missing data, the data was used to train the 
neural network model. Finally, the study uses the NARX 
model to select the best model performance for accurate pre-
diction. The NARX model uses five inputs and one output.

MLP network

This research pre-processed normalized calibration data 
(Zhao et al. 2012). Rumelhart et al. (1986) opined that 
the Back Propagation (BP) algorithm represents a super-
lative and well-known case of the Multi-Layer Perceptron 
(MLP) training algorithm that represents one of the best 
widespread techniques. The approaches optimize the feed-
forward neural network training. Polo et al. (2015) noted 
that BP refers to a learning device that resolves predictions 
in multi-layer perceptron networks, which requires differ-
entiability in the output layers’ activation function.There 

Fig. 2  Sea-level change analysis 
and prediction framework
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are two steps involved in the BP neural network training, 
namely, forward and backward steps. The forward step 
necessitates the propagation of the input signals from the 
network input to the output. In contrast, the backward step 
entails the backward propagation of the calculated error 
signals through the network, which is utilized to adjust 
the weights (Tsoukalas and Uhrig 1996). Thus, forward 
and backward steps concerning all training sets would be 
repeated until the error is reasonably low (Polo et al. 2015). 
Therefore, the best architecture model is determined by 
comparing the performance of the calibrated model (Zhao 
et al. 2012). The algorithm modifies the weights of every 
connection to reduce the error. After repeating this proce-
dure for a sufficient number of training cycles (epochs), the 
network will generally converge to a state with a network 
error more petite than a specified threshold. As a result, 
the network has been trained. The traditional BP computes 
relatively slowly due to linear convergence.As a result, the 
current study employs a recent second-order algorithm 
(the Levenberg–Marquardt Algorithm (LMA)), which 
speeds up the process of addressing several problems at the 
expense of more excellent computational memory (Lev-
enberg 1944). The entire dataset would be divided into 
three categories to achieve perfect model generalization: 
validation, training, and testing. After training the MLP 
network, the training dataset is used to fine-tune the bias 
and weights, while the validation set is used to halt train-
ing to avoid poor generalization. Finally, Hadzima-Nyarko 
et al. (2014) use the testing set to figure out how good the 
trained MLP network is.

NARX model

Xie et al. (2009) posited that the nonlinear autoregressive 
network, which has exogenous inputs (NARX) model, 
is frequently utilized in the identification area system. 
As a neural time-series device, the NARX is a recurrent 
dynamic network with feedback connections that encom-
pass some network layers. Thus, the NARX model is cen-
tered on the linear A.R.X. model, which is generally used 
in time-series modeling.

The NARX model’s defining equation is given as follows:

It indicates that the next value of the dependent output 
signal y(t) is regressed on the previous values of the output 
signal and previous values of an independent input signal. 
Hence, the NARX model can be executed using a feed-
forward neural network to estimate the function (f) . The 
resulting network is displayed in the diagram below with 
a two-layer F.F. network for the approximation (Boussaada 
et al. 2018; Li et al. 2019; Al-allaf et al. 2011).

Figure 3 illustrates the input and output of the NARX 
model, whose design is based on a distinctive multi-layer 
perceptron, neurons with modifiable synaptic bias and 
weights. Hence, the present and past values of the input 
that connote the independent inputs created from outside 
the network and the delayed output values on which the 
model output is regressed signify the signal vector’s data 
window utilized in the input layer. The learning device 
multi-layer perceptron networks require a resolution heu-
ristic algorithm that ensures the most excellent solution. 
For example, Polo et al. (2015) noted that the Levennberg-
Marquardt algorithm trained the network in the MATLAB 
software.

Diverse applications of the NARX network exist. It can 
be used to predict the subsequent input signal’s value. It 
can also be used for nonlinear filtering where the target 
output is the input signal’s noise-free version. The NARX 
network’s output is an estimate of nonlinear dynamic sys-
tems that are being modeled. As part of a typical NARX 
architecture, the output is returned to the input of the feed-
forward neural network. It could create a series–parallel 
architecture in which the accurate output is used rather 
than feeding back the estimated output.

Numerous researchers have applied the statistical analy-
sis of tide gauges to predict sea-level change in the Kuala 
Terengganu shoreline area (Zhang et al. 2004; Garcin et al. 
2013). However, alternative meshless Artificial Intelli-
gence (AI) methods, namely ANNs, fuzzy logic, and Nero-
Fuzzy, can be utilized to address issues affecting nearshore 

(2)
y(t) = f(y(t − 1), y(t − 2),… , y

(

t − ny
)

, u(t − 1), u(t − 2)… , u
(

t − nu
)

)

Fig. 3  A snapshot of the NARX 
network model
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sea-level change predictions. The initial development of 
ANNs started in the 1940s (McCulloch and Pitts 1943), 
followed by continuous development, primarily through 
the efforts of Hopfield (1982) and his works on iterative 
auto-associable neural networks (Hung et al. 2008). In 
recent decades, ANN has found a more significant practi-
cal application because of the developed algorithms that 
overcome the limitations discovered in the early networks. 
Thus, many neural network models have been investigated, 
studied, and directed to resolve diverse sets of difficulties 
based on neural network structure and the learning algo-
rithm (Hung et al. 2008).ANNs have been applied exten-
sively in diverse environmental modeling, geoscience, data 
validation, and risk management fields to overcome the 
difficulty of new nonlinear statistical approaches (Napoli-
tano et al. 2010). Neural networks are generally used to 
model various nonlinear relations between inputs and 
outputs and have recently offered alternative techniques 
for predictions, including forecasting rainfall-runoff (Hsu 
et al. 1995; Shamseldin 1997), river flooding (Campolo 
et al. 1997), rainfall intensity (Hung et al. 2008; French 
et al. 1992), streamflow (Zealand et al. 1999; Campolo 
and Soldati 1999; Abrahart and See 2000), wave param-
eter simulations (Deo and Naidu 1999), mixed tides (Lee 
and Jeng 2002), and for the now-casting of semidiurnal 
and diurnal tides (Tsai and Lee 1999) and related coastal 
studies (Makarynskyy et al. 2004).

In theory, an ANN possesses many advantages compared 
to other standard statistical methods. Neural networks auto-
matically permit indiscriminate nonlinear relationships 
between the dependent and independent variables and all 
potential interactions between the dependent variables. 
Conversely, conventional statistical methods necessitate 
supplementary modeling to tolerate this flexibility. Moreo-
ver, ANNs do not have obvious distributional assumptions 
(Sargent 2001). For instance, ANNs that can estimate non-
linear mathematical functions (Hornik 1993) permit pos-
sible simulations of complex behavior of systems, behavior 
with no prior knowledge of the internal relationships among 
their constituents (Haykin 1999). The ability to general-
ize remains one significant advantage of neural networks. 
Hence, ANN models can learn the performance of a spe-
cific task based on the empirical data available. One key 
feature of these models includes the innovative information 
processing system structure. The distinctive advantage of 
ANNs relative to other methods is the self-learning capacity 
that enhances their ability to specify the essential connec-
tion between the input and output variables without requir-
ing prior knowledge of the nature of the association. Zhao 
et al. (2012) noted that this advantage makes ANNs suitable 
for complex nonlinear problems that cannot be analytically 
resolved. This advantage makes the ANN models superior 
to other traditional statistical models, such as the Multiple 

Linear Regression (MLR) models, which are inappropriate 
for non-normally distributed data (Masters 1993).

Another merit of ANN is its capacity to resolve specific 
problems. ANN models are organized in many intercon-
nected processing neurons or nodes that work in unity. 
Therefore, they can be powerful tools for modeling (Lek 
et al. 1996; Lek and Guégan 1999; Mas et al. 2004). Addi-
tionally, ANN can learn from their surroundings using 
diverse samples in their learning algorithms. Every time an 
ANN is generalized, it can connect the input data even if 
it did not utilize them at the learning stage (Hornik et al. 
1989). The weights in the ANN are adjustable and can 
interrelate and react to the setting. Therefore, the ANN can 
respond adequately to situational changes and self-retrain 
after the initial training session concludes (Fredrick and 
Kostanic 2001).

One major weakness of an ANN is the quality of its 
“black box.” In other words, it is difficult or sometimes 
impossible to understand a problem using an ANN model 
without applying additional effort. For instance, regression 
techniques can remove potential explanatory variables that 
do not add to the fit of the model. Moreover, the regression 
technique centered on the fundamental statistical theory per-
mits the testing of a hypothesis concerning the multivariate 
and univariate relationship between the outcome of interest 
and every explanatory variable. In ANN models, however, 
these characteristics are typically unavailable.

Further current shortcomings of ANN are the computational 
resources needed and the lack of standard software (Sargent 
2001). They are also not easy to calculate and present the odds 
ratios and standardized coefficients corresponding to every vari-
able, unlike regression models. Similarly, the weights gener-
ated by a neural network analysis are challenging to interpret 
because they are influenced by the program utilized to generate 
them (Baxt 1995). It raises the issue of interpretability for an 
individual variable. Figure 4 illustrates the levels (predictors) 
that constitute one of the significant characteristics criticized in 
neural network models (Ohno and Rowland 1999).

The NARX network offers another essential application, 
namely, the modeling of nonlinear dynamic systems. The 
output of the NARX network can be considered an estimate 
of the output of a nonlinear dynamic system used for mod-
eling. The output is the feedback to the input of the feed-for-
ward neural network and forms part of the standard NARX 

Feed
Forward
Network

TDL

x

x

y

TDL

Feed
Forward
Network

TDLx

y

TDL

a b

Fig. 4  Architectures of the NARX. a Parallel. b Series–parallel



Environmental Science and Pollution Research 

1 3

architecture. Because the accurate output is available during 
the training of the network, one can create a series–parallel 
architecture, in which the accurate output is used instead of 
feeding back the estimated output.

It has two advantages. The first is that the input to the 
feed-forward network is more accurate. The second is that 
the resulting network has a purely feed-forward architec-
ture, and static backpropagation can be used for training. 
In this study, during the training phase, the series–parallel 
architecture is used because of the availability of the valid 
past values of the time series. The use of a series–parallel 
architecture has two advantages. The first is using valid 
values as the input of the feed-forward network. The sec-
ond advantage consists of the architecture of the resulting 
network, which is purely feed-forward. The standard train-
ing algorithms for MLP networks can be used. After the 
training phase, the NARXis converted to a parallel archi-
tecture which is beneficial for a multi-step-ahead predic-
tion. The mapping function F (·) is initially unknown and is 
approximated during the training process of the prediction. 
In the NARX model, the internal architecture that performs 
this approximation is the MLP. The MLP offers a robust 
structure that allows learning any continuous nonlinear 
mapping. As presented in Fig. 5, a classic MLP consists 
of three layers: the input, hidden, and output layers. Other 

elements consist of neurons, activation functions, and 
weights. The direction of the information flow throughout 
the layers is from the input to the output layer.

In the NARX model, the internal architecture that per-
forms this approximation is the MLP. The MLP offers a 
robust structure that allows learning any type of continuous 
nonlinear mapping. The direction of the information flow 
throughout the layers runs from the input to the output layer. 
For example, the previous layer gives the input vector xj, 
and its weight vector wij generates the scalar product xj × wij 
(Fig. 6). An activation function f is then performed to obtain 
the following neuron output:

where i is the index of the neuron in the layer, and j repre-
sents the input index in the ANN.

Evaluation and performance assessment

The performance assessment is discussed the prediction 
error, explaining the validation between the observed and 
predicted or simulated data. The evaluation of model accu-
racy is essential to determine the superlative neural network 
architecture that produces the most precise and reliable 
simulated or predicted data (Khamis and Abdullah 2014).

Several methods of performance assessment are applied 
to measure accuracy. This present study evaluates the per-
formance of the Mean Square Error (MSE) and the coeffi-
cient of determination (R). R measures the goodness of fit of 
the regression. Here it is used as a measure to appraise the 
degree of correlation between the trained network estimation 
and the experimental data (Farajzadeh et al. 2014; Hamzehie 
et al. 2014; Mohammed et al. 2013; Hadzima-Nyarko et al. 
2014; Nitsure et al. 2014; Mashaly et al. 2015; Ranković 
et al. 2014; Tezel and Buyukyildiz 2016). The correlation 
of determination (R) is given as follows:
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∑
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where n represents the number of samples, Oi represents the 
observed sea level, Pi represents the predicted sea level, O 
represents the mean of observed values, and P represents the 
mean of predicted values. The R values lie between 0 and 1, 
with the value of 0 indicating the absence of a correlation 
between observation and prediction values. In contrast, the 
value of 1 signifies a maximum correlation between the values.

Hadzima-Nyarko et al. (2014) posited that the Mean 
Squared Error (MSE) is commonly used to designate the 
network error. The MSE is an alternative procedure for 
measuring performance by considering the real values and 

(4)R =

∑n

i=1

�

Oi = O
��

Pi − P
�

∑n

i=1

�

Oi − O
�2

�

∑n

i=1

�

Pi − P
�2

an estimator (Leahy et al. 2008; Polo et al. 2015; Moham-
med et al. 2013; Ranković et al. 2014).

It is given as follows:

A Mean Square Error (MSE) close to 0 indicates more 
accurate model responses.

Statistical smoothing models and remissing 
sea‑level data

This section presents the empirical results obtained from the 
analysis of sea-level time series, which is the first objective 
of this study (Table 2). The ANNs simulated the sea-level 
rise between 1991 and 2012 and predicted sea-level rise for 
the years from 2013 to 2020 for Kuala Terengganu using the 
NARX model. The measurements collected over the past 
22 years from a single tide gauge at the Chendering station were 
used to train and validate the employed neural network models. 
The study applied data accumulated over 22 years from the 
Chendering station. However, the dataset contained several data 
gaps. These were identified for the following years: 1992, 1993, 
1994, 1996, 1999, 2004, 2008, 2009, 2010, and 2012 (Table 3).

(5)MSE =
1

n

n
∑

i=1

(Oi − Pi)
2

Table 2  Performance indicators of the various models on the test 
dataset

Statistic methods R RMSE MSE MAPE MPE

Moving average method 0.79 8.090 53.613 0.917 0.018
Exponential method 0.79 7.585 57.968 2.489  − 0.098
Holt-Winters method 0.73 8.628 74.868 2.856  − 0.082
Fourier proportion 0.95 3.343 12.211 1.059  − 0.026

Table 3  Missing and outlier data of sea levels, as identified through the analysis

Year Month Day Missing Year Month Day Out layer

1992 Nov 24–25 2 1993 Dec 22, 23 2
1993 Mar 17–19 3 1995 Jan 6 1

Apr 1–16 16 1998 Dec 13 1
1994 Aug 28–31 4 1999 Dec 21, 22, 23 3

Sept 1–6 6 2000 Nov 22 1
1996 Mar 16–31 16 2001 Dec 22, 23 2

May 15–20 6 Feb 15 1
1999 Dec 21 1 2004 Mar 9 1
2004 Jan 9 1 Feb 11 1
2008 July 29–31 3 Jan 1, 2 2

Aug 1–22 22 2005 Mar 6 1
Dec 2, 12, 14–31 20 Nov 20, 21, 22, 23 4

2009 Oct 11 1 Dec 17, 18, 19 3
Jan 1–13 13 22, 23, 24 3

2010 Sept 11–23 13 2006 Dec 17, 18 2
2012 Sept 17–30 19 20, 21, 22 3

Oct 1–17 17 2009 Jan 14 1
Total Nov 5 1
12 22 196 196 21–22 2

2012 Jan 27 1
Dec 25, 26 2

Total
16 29 65 65
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We chose various predicted statistical models in this sec-
tion of the data analysis. First, we choose the model that best 
predicts results for tide data using RMSE, MSE, RMSPE, and 
R. We used some statistical models to simulate data from 
1991-to 2012. After validation, the data replaced missing 
data with new data (Fig. 7).

This study reviewed numerous approaches to analyzing 
time-series data. Following the statistical modeling, obtain-
ing observed tide gauge data, and analyzing bias descrip-
tively, we found that all the time series data were non-
parametric. For this type of data, we used non-parametric 
tests to identify patterns and the nature of the phenomenon 
represented in the observed data.

Sea‑level simulation and prediction using 
the NARX model

The sea-level variations were simulated and predicted using 
the NARX model. The input used for simulation was the 
observed monthly tide gauge data, along with data on wind, 
rainfall (Kwan et al. 2014), SST, and SLP covering the time 
of 1991-to 2012. Thus, the SLR was the target output. Simi-
larly, the input data for prediction included the predicted 
monthly tide gauge, and data on wind, rainfall, SST, and 
SLP. All data were from 1991 to 2012 due to the inher-
ent limitations and insufficient data for some inputs. In the 
NARX model, five input data and one target (monthly data 
from 1991 to 2012) were used for simulation.

Similarly, for prediction, five inputs and one target 
(monthly data from 2013 to 2020) were used to train the 
neural network. Figure 8 shows the flowchart of the NARX 
model training process to predict future sea levels for the 
Kuala Terengganu. The sea-level rates between the layers 
were acquired by training the neural network through a reverse 
calculation process in which the contribution or importance of 
each effect criterion on sea level was computed.

NARX‑NN model architecture

The NARX model was trained, validated, and tested using 
60%, 20%, and 20% of observed data. The model is run 
250 times to achieve the best results. The best NARX 
model was chosen, with an architecture (5–6–1) and four 
delays (Fig. 9).

This model was selected as the best model with an MSE 
of 0.000292, 0.000269, and 0.000261 for the training set, 
the validation set, and the testing set, respectively, and 
their respective R of 93%, 92%, and 94% (Fig. 10a). Fur-
thermore, under the best validation performance, the error 

Fig. 7  Replaced missing tide 
gauge data using a moving aver-
age model
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reached 0.00026961 at epoch 2 (Fig. 10b). Therefore, it 
indicates a good fit; therefore, the NARX model is well 
trained and can be used to simulate sea levels between 
1991 and 2012. Figure 10c  illustrates the result of the 
NARX model simulation that shows an upward trend for 
sea-level change in the Kuala Terengganu coastal area 
from 1991to 2012 with a maximum rate of 28.73 mm/year 
and an average of about 8.81 mm/year. Additionally, a fall-
ing sea level was noted at around 1.75–56.12 mm/year 
between 1991 and 2012. Based on this result, the NARX 
model with architecture (5–6-1) and four Lag is suitable 
for predicting the sea-level rise for 2013–2020.

Five inputs (predicted time series data), six hidden lay-
ers, and one output layer were applied to predict sea-level 
change based on the NARX model. This model used a 
similar approach of 60%, 20%, and 20% of data for the 
training, validation, and testing set. The model was run 

250 times to find the best NARX model for predicting sea-
level change from 2013 to 2020, and the most significant 
result came from an ANN architecture (5–6-1) with MSE 
and R. (Table 4) and (Fig. 11a).

Figure 11b highlights that the best validation perfor-
mance is at epoch 4, where the error reached 0.00049639. 
It indicates that the model is well trained and well fitted. 
Figure 11c shows an upward trend of the predicted sea 
level based on the simulated NARX model for 2013 to 

Fig. 9  NARX model architec-
ture
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2020. Figure 10d indicates the simulated and predicted 
sea-level rise between 1991 and 2020, which also shows 
an upward trend.

The study applied the prediction result of the NARX 
model with an architecture (5–6-1) and with four Lag to 
estimate the rate of sea-level change in Kuala Terengganu. 
The simulated and predicted sea-level changes from 1991 
to 2020 based on the NARX model are shown in Fig. 12.

The result indicates an upward trend for sea-level change 
between 2013 and 2020, with a minimum increase of 
1.10 mm/year and a maximum increase of 79.26 mm/year. 
Besides, the falling sea level was around 3.82–42.46 mm/

year from 2013 to 2020. Changes in sea-level trends are 
associated with changes in input data, especially SST and 
SLP. There is a positive relationship between SST and sea-
level change and a negative relationship between sea-level 
change and SLP (Bagheri et al. 2021a).

The results of this study’s predicted sea level using the 
NARX model are consistent with the findings of Awang and 
Abd. Hamid (2013). N.A.H.R.I.M investigated the impact of 
climate change on sea-level rise in Malaysia. It is consist-
ent with the findings of Awang and Abd. Hamid (2013). 
N.A.H.R.I.M. conducted a study on the impact of climate 
change on sea-level rise in Malaysia. The study projected 

Fig. 11  a NARX model perfor-
mance, training, validation, and 
the testing result (2013–2020). 
b The best validation perfor-
mance using MSE. c Sea-level 
rise prediction trend using the 
NARX model. d Sea-level rise 
simulation and sea-level rise 
prediction trends (1991–2020)
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sea-level rise on the Malaysian coast up to 2100, whereby 
the observed mean sea-level change rate based on satel-
lite altimetry data from 1993 to 2010 is between 2.7 and 
7.0 mm/year. The projected sea-level change for the year 
2100 is 0.25–0.5 m, with the maximum value occurring 
in low-lying areas along the Northeast and West coasts of 
Peninsular Malaysia. The result of this study is consistent 
with the findings of (Awang and Hamid 2013; N.A.H.R.I.M. 
2010a, 2010b; Bagheri et al. 2021c). Our findings indicate 
that Kuala Terengganu is expected to experience a sea-level 
rise which signifies potential hazards in the form of inunda-
tion, flood, and erosion.

Conclusion

Sea-level prediction data around shoreline areas is critical 
to accommodate sea-level changes. This study attempted 
to predict future sea-level changes in the shoreline area of 
Kuala Terengganu up to the year 2020 by applying a NARX 
model. After analyzing and normalizing sea-level observa-
tions (tide gauge data), sea-level changes in Kuala Tereng-
ganu were simulated utilizing a NARX model for the years 
between 1991 to 2012 and predicted for the years between 
2013 and 2020. The simulation results show an upward trend 
from 1991 to 2012, with a maximum rate of 28.73 mm/year 
and an average of about 8.81 mm/year, and the prediction 
results show an upward trend from 2013 to 2020, with a 
maximum rate of 79.26 mm/year, and an average of about 
25.34 mm/year. Between 1991 and 2020, sea levels in the 
Kuala Terengganu shoreline area increased at an average 
annual rate of 17.96 mm per year.

This study’s findings align with previous research (Bagh-
eri et al. 2021a; Makarynskyy, 2004). Investigated how 
climate change affects the sea-level rise in Malaysia and 
the predicted rise for Peninsular Malaysia (Bagheri et al. 
2021b). Another study (N.A.H.R.I.M. 2010b) found that 
roughly 3.3% of the shoreline’s 1963 km is highly suscep-
tible. The most seriously affected low-lying Northeast and 
West coast parts of the peninsular were anticipated to receive 
2.50–5.0 mm/year by year 2100. (Kelantan and Kedah). 
The study revealed a significant increase in sea-level rise 
in the past five years compared to 20 years ago. From 1993 
to 2010, the observed average sea level along the Malay-
sian coast was anticipated to be between 2.7 and 7.0 mm/
year (Din et al. 2019). These areas comprise the northern 
stretches of the Kedah beach and the southern stretches of 
the Terengganu beach. As a result, these estimates may be 
beneficial in warning residents in Kuala Terengganu’s shore-
line areas of the possibility of rapid sea-level rise, which 
could affect their livelihood and economy. As a result, the 
effects of rising sea levels on the country’s population and 
socioeconomic well-being may be reduced.

The result may also forecast future hazard events in this 
area. Results showed that low-lying locations with signifi-
cant human population density and socioeconomic activity 
are at risk of flooding, inundation, and shoreline erosion. 
The rising sea-level rates that we expect can help plan-
ning and implementation agencies and local governments 
develop plans and strategies for shoreline management in 
sensitive areas like Kuala Terengganu. This knowledge is 
critical, as the looming threat of a rising S.L. affects the 
socio-economy and quality of life of the residents of Kuala 
Terengganu. Armed with scientifically sound data, planners 
and decision-makers can establish plans to adapt to these 
potential changes.

Furthermore, the information gathered in this study can 
be used to determine Kuala Terengganu’s erosion vulnerabil-
ity. When developing vulnerability assessment systems for 
this region, this is essential. Overall, the study may improve 
the abilities of individuals involved in climate change plan-
ning, policy, and decision-making on shorelines and coastal 
areas. In addition, it will aid in the construction of long-term 
and short-term land use estimates that consider the shoreline 
area’s possible vulnerability.

One of the most significant weaknesses of using ANN 
models is the lack of data and sources for environmental 
and meteorological parameters for shoreline modification in 
coastal areas. The lack of an essential quality database for 
the study area’s environmental and climatic conditions. On-
time series data, there were few documents and reports. As a 
result, we estimated quantitative data for environmental and 
climatic conditions. One of the most significant environmen-
tal and climate data issues was seeking and collecting data. 
They were gathered from various Malaysian departments 
and local authorities. Since this study has been conducted 
using limited shoreline, meteorological data, and tidal gauge 
stations in the future, it is evident that it can only provide a 
broad picture of coastal environmental vulnerability. How-
ever, a study of general coastal management and planning 
in the Kuala Terengganu shoreline area may point to future 
research directions.

According to the findings of this study, the research indi-
cates the need for future research. This research suggests that 
combining the NARX model with climate data can simulate 
and predict sea level in the Kuala Terengganu coastal area. 
Our research employed this method to analyze a coastal 
city’s susceptibility using various causal climate elements. 
Although the NARX model can show the potential of using 
this integration method and provide valuable results in the 
study area, more research and application of this methodol-
ogy are needed to test the model’s transferability in various 
factors with similar and different shoreline hazard condi-
tions. In future studies, coastal environmental conservation 
can be combined with urban sustainability and vulnerabil-
ity because hazards and vulnerabilities such as erosion and 
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flooding can affect coastal city sustainability. The geospatial 
model used in this study can help coastal city managers, 
planners, and developers identify threatened regions and 
improve the coastal land use and shoreline management 
plans. The future sustainability of coastal city systems can 
be forecasted using time series data and satellite images for 
the specified indicators, resulting in more accurate projected 
sustainability. As a result, decision-making information can 
be successfully extracted and used to assist government pol-
icy-making in developing more substantial more sustainable 
coastal city zones.
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